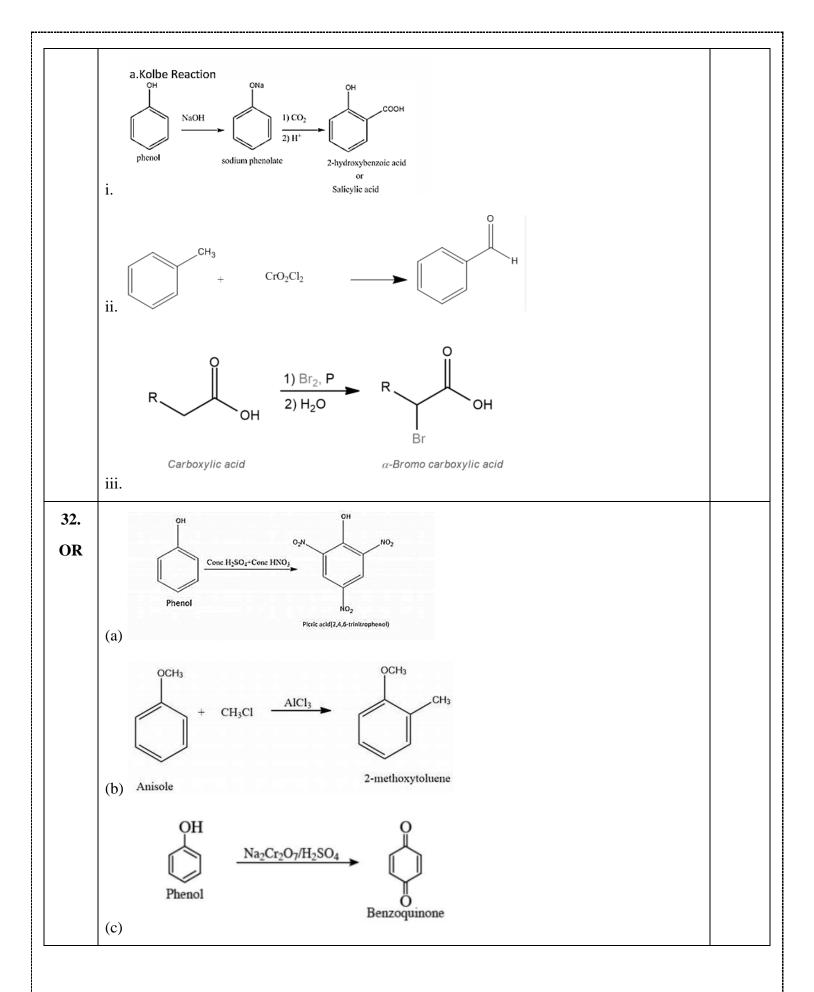


COMMON PRE-BOARD EXAMINATION 2024-25 Subject: CHEMISTRY (043)

Class XII

MARKING SCHEME

1.	(A)	1
2.	(C)	1
3.	(A)	1
4.	(B)	1
5.	(B)	1
6.	(B)	1
7.	(A)	1
8.	(D)	1
9.	(D)	1
10.	(B)	1
11.	(D)	1
12.	(C)	1
13.	(B)	1
14.	(A)	1
15.	(A)	1
16.	(C)	1
17.	A) (a) The partial pressure of the gas in vapour phase (p) is proportional to the mole fraction of the gas (x) in the solution	1
	(b) Gas (B) will have the higher value of K _H since low solubility.	1
17.	B) (a) Reverse osmosis occurs (b) Because the nonvolatile solute lowers the vapor pressure of the solvent . Thus,	
	(o) Because the nonvolutile solute lowers the rupor pressure of the solvent. Thus,	


OR	increasing the boiling point.	1
OK		
18.	(a) Ni is in +2 oxidation state with configuration 3d ⁸ . The two unpaired electrons do not pair up in presence of weak ligand H ₂ O. Thus d-d transition occurs - absorb red light	1/2
	and appears green. In presence of strong CN ⁻ , pairing will take place , absence of unpaired electrons no d-d transition - colourless. (b) For Td, CFSE is lower than pairing energy.	1/ ₂ 1
19.	$E^{\circ}(B^{+} B) = 0.80 \text{ V}, E^{\circ}(A^{2+} A) = \textbf{-2.37 V}$ The reaction is: $A(s) + 2B^{+}(1 \times 10^{-3} \text{ M}) \rightarrow A^{2+}(0.4 \text{ M}) + 2B(s)$ Substituting the values in Nernst equation,	
	$E = E^{\circ} - (0.059/2) \log[A^{2+}/[B^{+}]^{2}]$ $= [0.80 - (-2.37)] - [(0.059/2) \log(0.4/(10^{-3})^{2})]$	Eq-1 Sub-½
	= 3.17-0.1652 = 3.0047 V [Give 1 mark for the correct substitution and 1 mark for the correct answer]	1/2
20.	(a) Chlorobenzene to Toluene Wurtz-Fittig reaction- Reaction with Methyl chloride and Na in presence of ether. Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene	1
	(b) 2- Bromopropane to 1- Bromopropane - Dehydrohalogenation	_
	CH ₃ CH ₂ CH ₂ -Br Alcoholic KOH CH ₃ CH=CH ₂ propene	1/2
	$CH_{3} - CH = CH_{2} \xrightarrow{\begin{array}{c} HBr/P \text{ eroxide} \\ Anti-Markonikov \\ Addition \end{array}} H_{3}C - CH_{2} - CH_{2} - Br$ $\begin{array}{c} - CH_{2} - CH_{2} - Br \\ - Bromopropane \end{array}$	1/2
21.	 (a) B/c they have both acidic as well as basic group. (b) vitamin B₁. Beriberi, and vitamin B₁₂-Pernicious anaemia. 	1
22.	(a) The impure iron surface behaves like a cathode. Moisture containing dissolved oxygen or CO ₂ acts as an electrolyte	1/2 + 1/2 1/2 1/2

	$2 \text{ Fe (s)} \rightarrow 2 \text{ Fe}^{2+} + 4 \text{ e}^- [\text{oxidation}]$	
	$O_2(g) + 4 H^+(aq) + 4 e^- \rightarrow 2 H_2O(l)$ [Reduction]	1/2
	The overall reaction is: $2\text{Fe}(s) + \text{O}_2(g) + 4\text{H}^+(aq) \rightarrow 2\text{Fe}^{2+(aq)} + 2\text{ H}_2\text{O}(1)$	1/2
	(b) $2 \text{ Br}^-(\text{aq}) \rightarrow \text{Br}_2(\text{g}) + 2 \text{ e}^-, E^0 = 1.08 \text{ V occurs at anode}$	
		1/2
	because of lower reduction potential	1/2
23.	(a) Lawrencium, Lr - [Rn]f ¹⁴ 6d ¹ 7s ²	1/2+ 1/2
	(b) The elements in decreasing order of atomic number are: $X > Z > Y$	1
	The overall decrease in atomic and ionic radii with an increasing atomic number,	1
	from lanthanum to lutetium, called 'Lanthanoid contraction.'	
24.	• Since it forms a 2,4-DNP derivative, it contains a carbonyl group and must be an aldehyde or a ketone	1/2
	• Since it does not reduce Tollens' reagent, it cannot be an aldehyde and is therefore a ketone.	1/2
	• Since it gives the iodoform reaction, it must have a methyl group linked to the carbonyl carbon atom and is, therefore, a methyl ketone.	1/2
	• Since it gives 1,2-benzenedicarboxylic acid on oxidation, it is a 1,2-substituted benzene derivative.	1/2
	Using the molecular formula together with the points above, the structure of the compound is:	
	O C CH ₃ CH ₃	1
24. OR	 (a) Due to the presence of an electron withdrawing Nitro group (-I effect), which stabilises the carboxylate anion and strengthens the acid. Greater is the acidic character lower is the pKa value. (b) 	1
		1

	(i) — CH ₂ OH + — COONa	1
	(ii) NNHCONH ₂	
25.	CHO $ \begin{array}{ccc} & COOH \\ & & Br_2/H_2O \\ & (CHOH)_4 & \longrightarrow (CHOH)_4 + HBr \\ & & & (HOBr) & \\ & & CH_2OH & CH_2OH \end{array} $	1
	(a) Glucose Gluconic acid	1
	(b) It's a mixture of glucose and fructose	
	(c) Besides thymine, β- D-2-deoxyribose and phosphoric acid	1
26.	(a) Methanal	1
	(b) From Q is 2-methylpropan-2-ol and from R is 2-Butanol.	$\frac{1}{2} + \frac{1}{2}$
		/2 1 /2
	(c)	
	$\begin{array}{c} \begin{picture}(200,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,$	1/2
	Tertiary alcohol	
	CH ₃ MgBr + CH ₃ COCH ₃ $\xrightarrow{\text{H}_3O^+}$ CH ₃ $\xrightarrow{\text{C}}$ CH ₃ $\xrightarrow{\text{C}}$ CH ₃	1/2
27.	(a) 2-Bromobutane is chiral - contains asymmetric carbon atom - optically active. But, 1-Bromobutane is not chiral- no asymmetric carbon atom- optically inactive.	1
	(b) partial double bond character-resonance- Cl attached to sp ² C – High bond dissociation energy C-Cl bond.	1
	(c) SO ₂ and HCl gases are formed as by products, hence yield pure alkyl halides.	1
28.	$C = 0.025 \text{ mol } L^{-1}$	
		1
	$\Lambda^{0}_{m}(HCOOH) = \lambda^{0}(H^{+}) + \lambda^{0}(HCOO^{-}) = 349.6 + 54.6 = 404.2 \text{ S cm}^{2} \text{ mol}^{-1}$	1

	$V = 2 c^2/1$ $c = 0.025 \text{ y} (0.114)^2/(1.0.114) = 2.67 \text{ y} (0.41.1 - 1.1 $	1
20	$K = c \alpha^{2}/1 - \alpha = 0.025 \times (0.114)^{2}/(1-0.114) = 3.67 \times 10^{-4} \text{ mol } L^{-1}$ (a) mol ¹⁻ⁿ L ⁿ⁻¹ s ⁻¹	1
29.		1
	(b) The reactions which appear to follow higher order but actually follow first order	1/2
	kinetics.e.g. 1. Hydrolysis of ester (ethyl acetate)/ Inversion of cane sugar (any 1)	1/2
	e.g. 1. Hydrorysis of ester (ethyl acetate)/ inversion of calle sugar (any 1)	
	(c) rate= $k [H^+]^n$	1/2
	Initial pH = 3, ie $[H^+] = 1 \times 10^{-3}$, rate = r_1	1/2
	Final pH = 1, [H ⁺] = 1 x 10^{-1} , rate, $r_2 = 100 r_1$	
	$r_{1} = k [1 \times 10^{-3}]^{n}$	1/
	$r_{2} = k [1 \times 10^{-1}]^{n} = 100 r_{1}$	1/2
	$r_{1/} r_2 = [10^{-2}]^{n} = 1/100$	
	$1/100 = [1/100]^n$	1/2
	n= 1, First order reaction	
	OR	
	• The rate constant of a reaction increases with increase in temperature and becomes	1
	nearly double for every 10° rise in temperature.	
	• The dependence of the rate constant on temperature is given by Arrhenius equation,	1
	$\mathbf{k} = \mathbf{A}\mathbf{e}^{-\mathbf{E}\mathbf{a}/\mathbf{R}\mathbf{T}}$ where, Ea is the activation energy of the reaction and A represents the	
	frequency factor.	
30.	a) Benzene sulphonyl chloride (C ₆ H ₅ SO ₂ Cl),	1/2 + 1/2
	p-toluene sulphonyl chloride.	
	h)	
	b)	$\frac{1}{2} + \frac{1}{2}$
	$CH_3 - N - CH_3$	
	CH ₃ -N-CH ₃ CH ₃ N. N. Dimethyl methanamine	
	N, N-Dimethyl methanamine	14 + 14
	c) Amine Q and R will be secondary amine	$\frac{1}{2} + \frac{1}{2}$
	-do not contain any hydrogen atom attached to the nitrogen atom in the product	1
	formed are not acidic and hence insoluble in aq. NaOH.	
	OR	
	Amine P may be prepared by the Gabriel phthalimide process.	1/2
	Amine P is soluble in aq. NaOH. So, it is a primary amine.	1/2
	Gabriel synthesis is used for the preparation of primary amines.	

	$ \begin{array}{c c} O \\ \parallel \\ C \\ N-R \\ \hline O \\ N-R \\ \hline NaOH_{(aq)} \\ \hline C \\ C \\ C \\ O \\ O$	1
31.	a) $\mathbf{A} = \mathrm{K}_2 \mathrm{MnO}_4$	1/2
31.	$\mathbf{B} = \mathrm{KMnO_4}$	1/2
	$2MnO_2 + 4KOH + O_2 \rightarrow 2K_2MnO_4 + 2H_2O$	1/2
		1/2
	$3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$	
	b) Potassium diaquadioxalatochromate(III) trihydrate	1
	$EC - 3d^3 - t_{2g}^3 e_g^0$	1/2
	CN = 6,	1/2
	geometry- Octahedral -d ² sp ³ hybridisation	1/2+ 1/2
31.	B) (a) Ni ²⁺ - [Ar]3d ⁸ , Number of unpaired electrons, n =2	1/2
OR	Spin only magnetic moment, $\mu = \sqrt{n(n+2)}$	1/2
	$\mu = \sqrt{8} = 2.828 \text{ BM}$	$\frac{1}{2} + \frac{1}{2}$ (unit)
	(Deduct ½ mark for not writing the unit)	
	(b) Pentammineisothiocynatochromium((III) tetrachloridozincate(II).	1
	Coordination isomerism and linkage isomerism	$\frac{1}{2} + \frac{1}{2}$
	(c) Due to crystal field splitting the configuration of M changes from d ⁴ to t2g ³ and eg ¹ .	
	Since the half-filled t2g³ level is more stable , the M²+ ion will give one electron and	1
	will act as a reducing agent.	
32.	(i) CH ₃ -CH ₂ -CH-CH ₂ OH + CH ₃ CH ₂ I CH ₃	
	(ii) $CH_3CH_2CH_2OH + CH_3CH_2$ —C—I CH_3	
	(b)	

	CHO COONa CH ₂ - OH	
	2 + NaOH +	
	(e) (Benzyl Alcohol) (Benzyl Alcohol)	
33.	A) (a) KCl dissociates into K $^+$ and Cl $^-$, i.e, i = 2.	1/2
	Whereas, sugar doesn't dissociate to give ions.	1/2
	Since elevation in boiling point is directly proportional to "i" value . OR the	1
	elevation in the boiling point is a colligative property, depends on no. of ions.	
	(b) For sucrose	
	Mass, $w_2 = 10g$, Mass of water = $90g$	
	Molar mass of sucrose =342g mol ⁻¹	
	Molar mass of glucose =180 g mol ⁻¹	
	$\Delta T_f = T_f $ (pure solvent) - $T_f $ (solution)	1/
	= 273.15 - 269.15 = 4K	1/2
	$m = (w_2 \times 1000) = 10 \times 1000 = 0.325$	1/2
	$M_2 \times W_1$ 90 x 342	1/2
	$K_{\rm f.} = \Delta T_{\rm f}/m = 4 / 0.325 = 12.31$	
	For glucose	1/2
	$\Delta \ T_f = K_{f.} m$	1/2
	$= 12.31 \times 10 \times 1000 = 7.6$	
	90 x 180	1/2
	$\Delta T_{f} = T_f \text{ (pure solvent)} - T_f \text{ (solution)}$	
	T_f (solution)= 273.15 -7.6 = 265.55 K	
33.	OR	
	(a) Negative deviation from Raoult's law.	1/2
	There is an elevation of boiling point occurs i. e., the temperature of the solution	1/2 + 1/2
	increase. $\Delta H = -ve$. So, it is an exothermic reaction.	
	Maximum boiling azeotrope	1/2
	(b) Freezing point, $T_f = -0.068^{\circ}C$	
	K_f for water = 1.86K Kg mol ⁻¹	

$\Delta T_{f} = \Delta T_{f}^{0} - \Delta T_{f} = 0 - (-0.068) = 0.068 \text{ K}$	1/2
$\Delta T_{f} = i. K_{f.} m$	1/2
0.068= i. 1.86x 0.01	1/2
i = 3.65	
Degree of dissociation, $\alpha = i-1/n-1$, (n=4 for AlCl ₃)	1/2 + 1/2
=0.883	1/2